Research Highlight: "Structural Evolution of Three-Component Nanoparticles in Polymer Nanoreactors"


Peng-Cheng Chen, Jingshan S. Du, Brian Meckes, Liliang Huang, Zhuang Xie, James L. Hedrick, Vinayak P. Dravid, and Chad A. Mirkin.


Recent developments in scanning probe block copolymer lithography (SPBCL) enable the confinement of multiple metal precursors in a polymer nanoreactor and their subsequent transformation into a single multimetallic heterostructured nanoparticle through thermal annealing. However, the process by which multimetallic nanoparticles form in SPBCL-patterned nanoreactors remains unclear. Here, we utilize the combination of PEO-b-P2VP and Au, Ag, and Cu salts as a model three-component system to investigate this process. The data suggest that the formation of single-component Au, Ag, or Cu nanoparticles within polymer nanoreactors consists of two stages: (I) nucleation, growth, and coarsening of the particles to yield a single particle in each reactor; (II) continued particle growth by depletion of the remaining precursor in the reactor until the particle reaches a stable size. Also, different aggregation rates are observed for single-component particle formation (Au > Ag > Cu). This behavior is also observed for two-component systems, where nucleation sites have greater Au content than the other metals. This information can be used to trap nanoparticles with kinetic structures. High-temperature treatment ultimately facilitates the structural evolution of the kinetic particle into a particle with a fixed structure. Therefore, with multicomponent systems, a third stage that involves elemental redistribution within the particle must be part of the description of the synthetic process. This work not only provides a glimpse at the mechanism underlying multicomponent nanoparticle formation in SPBCL-generated nanoreactors but also illustrates, for the first time, the utility of SPBCL as a platform for controlling the architectural evolution of multimetallic nanoparticles in general.

 Formation of AuAg nanoparticles in polymer nanoreactors.

Full article can be found here.